Испарение и конденсация. Кипение жидкости. Влажность воздуха. SA. Парообразование Как происходит испарение и конденсация жидкости

Переход вещества в газообразное состояние называется парообразованием .

Совокупность молекул, вылетевших из вещества, называется паром этого вещества.

При парообразовании увеличиваются средние расстояния между молекулами. В результате потенциальная энергия взаимодействия частиц увеличивается (численное значение ее уменьшается, но она отрицательна). Таким образом, процесс парообразования связан с увеличением внутренней энергии вещества.

Парообразование может происходить непосредственно из твердого состояния - это возгонка (или сублимация ).

Переход из жидкого состояния в газообразное возможен двумя различными процессами: испарением и кипением.

Испарение - это парообразование, происходящее только со свободной поверхности жидкости, граничащей с газообразной средой или с вакуумом.

Экспериментально установлены следующие закономерности:

  1. При одинаковых условиях различные вещества испаряются с различной скоростью (скорость испарения определяется числом молекул, переходящих в пар с поверхности вещества за 1 с).
  2. Скорость испарения тем больше:
    1. чем больше площадь свободной поверхности жидкости;
    2. чем меньше плотность паров над поверхностью жидкости. Скорость увеличивается при движении окружающего воздуха (ветер);
    3. чем больше температура жидкости.
  3. При испарении температура тела понижается.

Механизм испарения можно объяснить с точки зрения MKT: молекулы, находящиеся на поверхности, удерживаются силами притяжения со стороны других молекул вещества. Молекула может вылететь за пределы жидкости лишь тогда, когда ее кинетическая энергия превышает значение той работы, которую необходимо совершить, чтобы преодолеть силы молекулярного притяжения (работа выхода). Поэтому покинуть вещество могут только быстрые молекулы. В результате средняя кинетическая энергия оставшихся молекул уменьшается, а температура жидкости понижается.

Для поддержания температуры испаряющейся жидкости неизменной к ней необходимо подводить некоторое количество теплоты.

Количество теплоты Q, необходимое для превращения жидкости в пар при постоянной температуре, называется теплотой парообразования .

Экспериментально установлено, что Q = Lm, где m - масса испарившейся жидкости, L - удельная теплота парообразования.

Удельное тепло парообразования - величина, численно равная количеству теплоты, необходимому для превращения в пар жидкости единичной массы при неизменной температуре.

Удельная теплота парообразования L зависит от рода жидкости и внешних условий. При увеличении температуры она уменьшается (рис. 1). Это объясняется тем, что все жидкости при нагревании расширяются. Расстояния между молекулами при этом увеличиваются и силы молекулярного взаимодействия уменьшаются. Кроме того, чем больше температура, тем больше средняя кинетическая энергия движения молекул и тем меньше энергии им нужно добавить, чтобы они могли вылететь за пределы поверхности жидкости.

Молекулы пара хаотически движутся. Поэтому скорости некоторых из них будут направлены в сторону жидкости. Достигнув поверхности, они втягиваются в нее силами притяжения со стороны молекул, находящихся на поверхности жидкости, и снова становятся молекулами жидкости. Процесс перехода вещества из газообразного состояния в жидкое называется конденсацией .

Число возвратившихся в жидкость за определенный промежуток времени молекул тем больше, чем больше концентрация молекул пара, а следовательно, чем больше давление пара над жидкостью. Конденсация пара сопровождается нагреванием жидкости. При конденсации выделяется такое же количество теплоты, которое было затрачено при испарении.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 1 г. Сельцо

ПРОЕКТ

ПО ФИЗИКЕ

КИПЕНИЕ ИСПАРЕНИЕ КОНДЕНСАЦИЯ

г. Сельцо

СОДЕРЖАНИЕ

1.Теоретическая часть

1.1. Испарение……………………………………………………………………..3

1.2. Как происходит испарение…………………………………………………..5

1.3. Условия испарения…………………………………………………………...6

1.4. Кипение……………………………………………………………………….7

1.5. Температура кипения………………………………………………………...7

1.6. Испарение и кипение…………………………………………………………8

1.7. Испарение и человек…………………………………………………………8

1.8. Роль испарения в жизни растений…………………………………………..9

1.9. Использование испарения в промышленности и быту…………………...10

1.10. Опасные испарения………………………………………………………..10

1.11. Круговорот воды в природе……………………………………………….11

1.12. Конденсация………………………………………………………………..11

2.Практическая часть

2.1. Испарение воды в стакане………………………………………………….14

2.2. Кипение и испарение………………………………………………………..16

2.3. Конденсация…………………………………………………………………20

3.Заключение…………………………………………………. 22

4.Список используемой литературы………………………... 23

    ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1.Испарение

Испарение - это переход вещества из жидкого состояния в газообразное (пар), происходящее со свободной поверхности жидкости.

Из повседневных наблюдений известно, что количество любой жидкости (бензина, эфира, воды), находящейся в открытом сосуде, постепенно уменьшается. Жидкость не исчезает бесследно - она превращается в пар.

Испарение - это один из видов парообразования. Другой вид - это кипение.

Механизм испарения . Как происходит испарение? Молекулы любой жидкости находятся в непрерывном и беспорядочном движении, причем, чем выше температура жидкости, тем больше кинетическая энергия молекул. Среднее значение кинетической энергии имеет определенную величину. Но у каждой молекулы кинетическая энергия может быть как больше, так и меньше средней. Если вблизи поверхности окажется молекула с кинетической энергией, достаточной для преодоления сил межмолекулярного притяжения, она вылетит из жидкости. То же самое повторится с другой быстрой молекулой, со второй, третьей и т. д. Вылетая наружу, эти молекулы образуют над жидкостью пар. Образование этого пара и есть испарение.

Поглощение энергии при испарении. Поскольку при испарении из жидкости вылетают более быстрые молекулы, средняя кинетическая энергия оставшихся в жидкости молекул становится все меньше и меньше. Это значит, что внутренняя энергия испаряющейся жидкости уменьшается. Поэтому если нет притока энергии к жидкости извне, температура испаряющейся жидкости понижается, жидкость охлаждается (именно поэтому, в частности, человеку в мокрой одежде холоднее, чем в сухой, особенно при ветре).

Однако при испарении воды, налитой в стакан, мы не замечаем понижения ее температуры. Чем это объяснить? Дело в том, что испарение в данном случае происходит медленно, и температура воды поддерживается постоянной за счет теплообмена с окружающим воздухом, из которого в жидкость поступает необходимое количество теплоты. Значит, чтобы испарение жидкости происходило без изменения ее температуры, жидкости необходимо сообщать энергию.

Количество теплоты, которое необходимо сообщить жидкости для образования единицы массы пара при постоянной температуре, называется теплотой парообразования.

Скорость испарения жидкости. В отличие от кипения испарение происходит при любой температуре, однако с повышением температуры жидкости скорость испарения возрастает. Чем выше температура жидкости, тем больше быстро движущихся молекул имеет достаточную кинетическую энергию, чтобы преодолеть силы притяжения соседних частиц и вылететь за пределы жидкости, и тем быстрее идет испарение.

Если же процесс испарения происходит в закрытом сосуде, то начальное число молекул вылетевших из жидкости, будет превосходить число молекул возвратившихся в нее. Таким образом, плотность пара в сосуде будет медленно увеличиваться. При увеличенной плотности пара увеличится и плотность количества молекул, возвращающихся в жидкость. Через некоторое время число молекул, которые покидают жидкость, сравняется с числом молекул, которые возвращаются в нее. Таким образом, количество парящих молекул над жидкостью станет постоянным. Наступит так называемое динамическое равновесие между паром и жидкостью.

Пар, который находится в динамическом равновесии со своей жидкостью, называется насыщенным. И наоборот, если в пространстве с паром какой-нибудь жидкости может наблюдаться дальнейшее испарение данной жидкости, пар, который находится в этом пространстве, называется ненасыщенным паром.

1.2.Как происходит испарение

Как и большинство физических и химических процессов, главную роль в процессе испарения играют молекулы. В жидкостях они расположены очень близко друг к другу, но при этом они не имеют фиксированного места расположения. Благодаря этому они могут «путешествовать» по всей площади жидкости, причем с разными скоростями. Это достигается благодаря тому, что во время движения они сталкиваются между собой и от этих столкновений их скорость меняется. Став достаточно быстрыми, самые активные молекулы получают возможность подняться на поверхность вещества и, преодолев силу притяжения других молекул, покинуть жидкость. Так происходит испарение воды или другого вещества и образуется пар. Не правда ли, немного напоминает полет ракеты в космос?

Хотя из жидкости в пар переходят самые активные молекулы, однако оставшиеся их «собратья» продолжают пребывать в постоянном движении. Постепенно и они приобретают необходимую скорость, чтобы преодолеть притяжение и перейти в другое агрегатное состояние. Постепенно и постоянно покидая жидкость, молекулы задействуют для этого ее внутреннюю энергию и она уменьшается. А это напрямую влияет на температуру вещества – она понижается. Именно поэтому количество остывающего чая в чашке немного уменьшается.

1.3.Условия испарения

Наблюдая за лужами после дождя, можно заметить, что некоторые из них высыхают быстрее, а некоторые дольше. Поскольку их высыхание является процессом испарения, то можно на данном примере разобраться с условиями, необходимыми для этого. Скорость испарения зависит от типа испаряемого вещества, ведь каждое из них имеет уникальные особенности, влияющие на время, за которое его молекулы полностью перейдут в газообразное состояние. Если оставить открытыми 2 идентичных флакона, наполненных одинаковым количеством жидкости (в одном спирт С2Н5ОН, в другом – вода Н2О), то первая емкость опустеет быстрее. Поскольку, как уже было сказано выше, температура испарения у спирта ниже, а значит, он быстрее испарится. Второе, от чего зависит испарение, – температура окружающей среды и температура кипения испаряемого вещества. Чем выше первая и ниже вторая, тем быстрее жидкость сможет ее достигнуть и перейти в газообразное состояние. Именно поэтому при проведении некоторых химических реакций с участием испарения вещества специально нагреваются. Еще одним условием, от чего зависит испарение, является площадь поверхности вещества, с которого оно происходит. Чем она больше, тем быстрее происходит процесс. Рассматривая различные примеры испарения, можно снова вспомнить о чае. Его часто переливают в блюдце, чтобы охладить. Там напиток быстрее остывал, потому что увеличивалась площадь поверхности жидкости (диаметр блюдца больше диаметра чашки). И снова о чае. Известен еще одни способ быстрее его остудить – подуть на него. Каким образом можно заметить, что наличие ветра (движения воздуха) - это то, от чего также зависит испарение. Чем выше скорость ветра, тем быстрее молекулы жидкости перейдут в пар. Также влияет на интенсивность испарения атмосферное давление: чем оно ниже, тем быстрее молекулы переходят из одного состояния в другое.

1.4.Кипение

Кипение - процесс интенсивного , который происходит в жидкости, как на свободной её поверхности, так и внутри её структуры. При этом в объёме жидкости возникают границы разделения , то есть на стенках сосуда образуются пузырьки, которые содержат и . Кипение, как и , является одним из способов парообразования. В отличие от испарения, кипение может происходить лишь при определённой и . Температура, при которой происходит кипение жидкости, находящейся под постоянным давлением, называется . Как правило, температура кипения при нормальном атмосферном давлении приводится как одна из основных характеристик химически чистых . Процессы кипения широко применяются в различных областях человеческой деятельности. Например, является одним из распространённых способов физической питьевой воды. Кипячение воды представляет собой процесс нагревания её до температуры кипения с целью получения .

1.5.Температура кипения

Температура кипения находится в прямо пропорциональной зависимости от давления, оказываемого на всю жидкость, точнее, на ее поверхность. В школьном курсе физике указано, что вода начинает кипеть при температуре в сто градусов по Цельсию. Но мало кто помнит, что данное утверждение верно только в условиях нормального давления. За норму принято считать величину в 101 кПа. Если увеличить давление, то кипение жидкости будет происходить при другой температуре. Это физическое свойство используют производители современных бытовых приборов. Примером может послужить скороварка. Всем хозяйками известно, что в подобных устройствах пища готовится гораздо быстрее, чем в обычных кастрюлях. С чем это связано? С давлением, которое образуется в скороварке. Оно в два раза превышает норму. Поэтому и кипение воды происходит приблизительно при ста двадцати градусов по Цельсию.

1.6.Испарение и кипение

Кипение – это активный процесс, который происходит при определенной температуре. Для каждого вещества она уникальна и может меняться только при понижении атмосферного давления. При нормальных условиях для кипения воды нужно 100°С, для рафинированного подсолнечного масла - 227 °С, для нерафинированного - 107 °С. Спирту, чтобы закипеть, наоборот, нужна более низкая температура – 78 °С. Температура же испарения может быть любой и оно, в отличие от кипения, происходит постоянно.

Вторым существенным отличием между процессами является то, что при кипении парообразование происходит по всей толще жидкости. Тогда как испарение воды или других веществ происходит только с их поверхности. Кстати, процесс кипения всегда одновременно сопровождается и испарением .

1.7.Испарение и человек

Рассматривая различные примеры испарения, нельзя не вспомнить влияние этого процесса на организм человека. Как известно, при температуре тела 42,2°С белок в крови человека сворачивается, что ведет к смерти. Нагреваться человеческое тело может не только из-за инфекции, но и при выполнении физического труда, занятий спортом или во время пребывания в жарком помещении. Организму удается сохранить приемлемую для нормальной жизнедеятельности температуру, благодаря системе самоохлаждения – потоотделению. Если температура тела повышается, через поры кожи выделяется пот, а потом происходит его испарение. Этот процесс помогает «сжечь» лишнюю энергию и способствует охлаждению организма и нормализации его температуры. Кстати, именно поэтому не стоит безоговорочно верить рекламам, которые преподносят пот как главное бедствие современного общества и пытаются продать наивным покупателям всевозможные вещества для избавления от него. Заставить организм меньше потеть, не нарушая его нормальной работы, нельзя, а хороший дезодорант способен лишь маскировать неприятный запах пота. Поэтому, используя антиперспиранты, различные присыпки и пудры, можно нанести организму непоправимый вред. Ведь эти вещества забивают поры или сужают выводные протоки потовых желез, а значит, лишают тело возможности контролировать свою температуру. В случаях, если использование антиперспирантов все же необходимо, предварительно стоит проконсультироваться с врачом.

1.8.Роль испарения в жизни растений

Как известно, не только человек на 70% состоит из воды, но и растения, а некоторые, вроде редиса, и на все 90%. Поэтому испарение также важно и для них. Вода является одним из главных источников попадания полезных (и вредных тоже) веществ в организм растения. Однако, чтобы эти вещества могли усвоиться, необходим солнечный свет. Вот только в жаркие дни солнце способно не просто нагреть растение, но и перегреть, тем самым погубив его. Чтобы этого не произошло, представители флоры способны самоохлаждаться (похоже на человеческий процесс потоотделения). Иными словами при перегреве растения испаряют воду и таким образом охлаждаются. Поэтому поливу садов и огородов уделяется летом так много внимания.

1.9.Использование испарения в промышленности и быту

Для химической и пищевой промышленности испарение – это незаменимый процесс. Как уже было сказано выше, оно не только помогает производить дегидратацию многих продуктов (испарять влагу из них), что увеличивает срок их хранения; но также помогает изготавливать идеальные диетические продукты (меньше веса и калорий, при большем содержании полезных веществ). Также испарение (в особенности сублимация) используется для очистки различных веществ. Еще одной сферой применения является кондиционирование воздуха Не стоит забывать и о медицине. Ведь процесс ингаляции (вдыхание пара, насыщенного лечебными препаратами) основан тоже на процессе испарения.

1.10.Опасные испарения

Однако, как и у всякого процесса, у этого есть и негативные стороны. Ведь превращаться в пар и вдыхаться людьми и животными могут не только полезные вещества, но и смертельно опасные. А самое печальное в том, что они – невидимы, а значит, человек не всегда знает, что подвергся воздействию токсина. Именно поэтому стоит избегать пребывания без защитных масок и костюмов, на заводах и предприятиях, работающих с опасными веществами. К сожалению, вредные испарения могут подстерегать и дома. Ведь если мебель, обои, линолеум или другие предметы изготовлены из дешевых материалов с нарушениями технологии, они способны выделять токсины в воздух, которые и будут постепенно «травить» своих хозяев. Поэтому при покупке любой вещи, стоит просматривать сертификат качества материалов, из которых она изготовлена

1.11.Круговорот воды в природе

В сильную жару реки, пруды и озера мелеют, вода испаряется, то есть из жидкого состояния переходит в газообразное -- превращается в невидимый пар. В течении дня, вода луж, прудов, озер, рек, морей, влага, содержащаяся в растениях нагревается Солнцем и испаряется, причем тем скорее, чем сильнее нагрета. Можно заметить это, если две одинаковые тарелки наполнить разным количеством воды и одну из них выставить на солнцепек, а другую поместить в тень. Там где вода нагревается солнечными лучами, она будет испаряться заметно быстрее. Ускоряет испарение и ветер. Влажный лист бумаги на ветру высохнет быстрее, чем оставленный там, где воздух спокоен и неподвижен.

В жаркие сухие дни человек потеет, но пот мало его беспокоит: он мгновенно высыхает. А когда стоит влажная жара, то от пота намокает даже одежда. Но если влага постоянно испаряется из морей, рек, озер, если она уходит из растений и исчезает в атмосфере, то почему же тогда Земля не высыхает?

Это не случается потому, что вода совершает постоянный круговорот. Испарившись, она поднимается вместе с нагретым воздухом, вверху водяной пар охлаждается, принимая форму мельчайших капелек. Из них образуются облака, которые ветер несет по небу, постепенно влаги становится все больше и больше, облака превращаются в тучи, и вода возвращается на поверхность земли в виде дождя, снега и града.

1.12.Конденсация

Конденсация (от лат. condensatio - уплотнение, сгущение) - переход вещества из газообразного состояния (пара) в жидкое или твердое состояние.

Известно, что при наличии ветра жидкость испаряется быстрее. Почему? Дело в том, что одновременно с испарением с поверхности жидкости идет и конденсация. Конденсация происходит из-за того, что часть молекул пара, беспорядочно перемещаясь над жидкостью, снова возвращается в нее. Ветер же выносит вылетевшие из жидкости молекулы и не дает им возвращаться.

Конденсация может происходить и тогда, когда пар не соприкасается с жидкостью. Именно конденсацией объясняется, например, образование облаков: молекулы водяного пара, поднимающиеся над землей, в более холодных слоях атмосферы группируются в мельчайшие капельки воды, скопления которых и представляют собой облака. Следствием конденсации водяного пара в атмосфере являются также дождь и роса.

При испарении жидкость охлаждается и, став более холодной, чем окружающая среда, начинает поглощать ее энергию. При конденсации же, наоборот, происходит выделение некоторого количества теплоты в окружающую среду, и ее температура несколько повышается. Количество теплоты, выделяющееся при конденсации единицы массы, равно теплоте испарения.

Конденсация может происходить в объёме (туман, дождь) и на охлаждаемой поверхности. В теплообменных аппаратах – конденсация на охлаждаемой поверхности. Разумеется, при такой конденсации температура поверхности стенки должна быть меньше температуры насыщения. В свою очередь, конденсация на охлаждаемой поверхности может быть двух видов:

    Плёночная конденсация – имеет место, когда жидкость смачивает поверхность, тогда конденсат образует сплошную плёнку.

    Капельная конденсация – когда конденсат – не смачивающая жидкость и собирается на поверхности в капли, которые быстро стекают, оставляя почти всю поверхность чистой.

Если на газовой плите с предельно большим пламенем горелки стоит открытая кастрюля с водой, близкой к кипению,то как только выключить газ, над кастрюлей появляется обильный пар. Оказывается, что при работе горелки конденсация пара происходила на большом расстоянии от кастрюли, конденсат уносится конвекционными потоками воздуха, поэтому сконденсированные частицы пара не видны. Когда горелку выключают, пар начинает конденсироваться над кастрюлей и поэтому становится видимым .

Конденсат на окнах.

Образование конденсата на стеклах происходит в холодное время года. С точки зрения физики, образование конденсата на окнах происходит из-за понижения температуры поверхности ниже температуры . Температура точки росы зависит от температуры и влажности воздуха в помещении. Причина образования конденсата на окнах может состоять как в чрезмерном повышении влажности внутри помещения, вызванном нарушением вентиляции, так и в невысоких теплоизолирующих свойствах стеклопакета, металлопластиковой рамы, оконной коробки, в неправильной глубине монтажа окна в однородной стене, неправильной глубине монтажа относительно слоя стенового утеплителя, в полном отсутствии, либо в некачественном утеплении оконных откосов.

Конденсация пара в трубах . По мере прохождения по трубе пар постепенно конденсируется и на стенках образуется пленка конденсата.

2.ПРАКТИЧЕСКАЯ ЧАСТЬ

В ходе изучения понятий: испарение, кипение и конденсация, я провела несколько опытов, чтобы убедиться в этом на примерах.

    Испарение воды в стакане.

Я взяла два стакана холодной воды (23 ноября), отметила на них уровень и поставила на окно, только один накрыла крышкой.

Сначала я фотографировала через день, условия внешней среды не менялись. По снимкам видно, что уровень воды уменьшается, причем почти одинаково, в открытом стакане, значит происходит испарение. Последняя фотография была сделана 14 декабря (процесс испарения продолжается). Если воду так и оставить, то она полностью испарится. В закрытом стакане уровень жидкости изменился, но совсем не значительно. Значит процесс испарения происходит быстрее на открытых поверхностях.

Во втором опыте, я взяла два стакана с водой, но одна холодная, а вторая горячая. Через 40 минут мы видим, что уровень горячей жидкости меньше, чем холодной. Значит процесс испарения зависит от температуры: чем она выше, тем быстрее испаряется жидкость.

2.Кипение и испарение.

В следующем опыте я проверяла как происходит процесс испарения воды во время кипения: налила холодной воды и поставила на газовую плиту.

Первую минуту ничего не происходит, на потом, по мере нагревания, начинают появляться пузырьки, с каждой секундой все больше и больше.


С течением времени видно, что уровень воды уменьшается, и вода испаряется полностью. Причем, в кастрюлю мы налили воды больше, чем в стакан, а вода в ней испарилась гораздо быстрее. Значит, чем выше температура жидкости, тем быстрее она испаряется.

3.Конденсация.

В следующем опыте мною было проверено явление конденсации. Кастрюлю с водой, которую я кипятила, накрыла крышкой. Мгновенно на ней образовались капельки воды, это пар конденсировался.


В течение нескольких секунд капли начали увеличиваться и стекаться вниз.

Также процесс конденсации можно наблюдать на окнах и входных дверях в холодное время года.

3.ЗАКЛЮЧЕНИЕ

В ходе работы над проектом я, теоретически изучила явления: испарение, кипение, конденсация. Как проходят эти процессы, какие условия необходимы для их протекания, от чего зависит скорость этих явлений, роль их в жизни человека и природы.

Опытным путем я установила, что испарение происходит быстрее в открытом сосуде.

Вывод: скорость испарения жидкости напрямую зависит от площади ее поверхности и доступности воздуха (открытый сосуд).

Также в процессе опытов, я установила, что чем выше температура жидкости, тем процесс испарения идет быстрее.

Вывод: скорость испарения жидкости напрямую зависит от ее температуры, чем выше, тем быстрее.

Также опытным путем я изучила процесс конденсации. Можно сделать вывод, что причиной появления конденсата в нашей жизни (на окнах, входных дверях в холодное время года, в ванной, после принятия душа) связано с повышенной влажностью и перепадами температур.

Таким образом : испарение, кипение и конденсация являются неотъемлемыми и необходимыми явлениями в жизни человека и живой природы.

4.СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Физика 8 класс А. В. Перышкин. М.: 2013 г.

2. Интернет.

В данной статье мы раскроем смысл таких понятий, как «испарение» и «конденсация».

Парообразование характеризируется переходом вещества из жидкого в газообразное состояние. Это может осуществляться двумя видами: посредством кипения, либо способом испарения.

Испарением именуется процесс парообразования, которое происходит с поверхности жидкого вещества. Далее расскажем подробнее, как происходит испарение и конденсация, то есть обратный процесс - возвращение молекул в жидкость. Процесс испарения осуществляется так: ввиду того, что молекулы любого вещества в жидком состоянии беспорядочно непрерывно движутся, причем с разной скоростью. Между ними существует взаимное притяжение, благодаря которому они не могут вылететь наружу, но если на поверхности вещества окажется молекула с высоким показателем кинетической энергии, то она преодолеет между молекулами и вылетит из вещества. Тот же процесс повторится и с другими молекулами. Вылетев наружу, молекулы образуют пар над жидкостью. Это и есть испарение.

Ввиду того, что из жидкости при испарении вылетают молекулы, имеющие наибольшую показатель кинетической энергии молекул, который остались в веществе, идет на убывание. В результате понижается температура испаряющейся жидкости, и она охлаждается. В то же время известно, что вода длительное время находящаяся в стакане также испаряется, но ведь она не охлаждается непрерывно пока не замерзнет. Почему? Все дело в теплообмене воды с теплым воздухом, который окружает стакан.

Скорость испарения зависит от вида жидкости, ее температуры, площади поверхности от наличия над поверхностью жидкого вещества ветра.

Охлаждение вещества в жидком состоянии при испарении более существенно при быстром процессе испарения. Вещества, которые быстро испаряются, применяются в технике. Охлаждение жидкости во время испарения также используется в аппаратах, которыми измеряют

При помощи несложных опытов можно определить, что скорость испарения будет расти вместе с увеличением температуры жидкого вещества, а также пропорционально увеличению площади свободной поверхности.

Испарение и конденсация процессы противоположные. Выше мы узнали, а теперь рассмотрим, как происходит конденсация. Жидкость испаряется быстрее при наличии ветра, но почему? Это происходит из-за того, что во время испарения осуществляется также и обратный процесс, который называется «конденсация». Она возникает по причине того, что некоторые молекулы пара, перемещаясь над жидким веществом, возвращаются в него обратно. А ветер относит вылетевшие молекулы на большое расстояние, не давая возможности им вернуться обратно.

Жидкость, охлаждаемая во время испарения, становясь холоднее окружающей среды, начинает осуществлять поглощение ее энергии. Количество поглощаемой энергии называется «скрытая теплота испарения».

А при конденсации происходит обратное: энергия выделяется в окружающую среду, тем самым повышая ее температурный показатель. Существует два вида конденсации: пленочный и капельный. Пленочный образуется на смачиваемой поверхности и сопровождается возникновением пленки. На поверхности, которая не смачивается, образуется капельный конденсат.

Испарение и конденсация на практике применяются в процессе работы холодильного оборудования.

1. Испарение и конденсация

Процесс перехода вещества из жидкого состояния в газообразное состояние называется парообразованием, обратный процесс превращения вещества из газообразного состояния в жидкое называют конденсацией. Существуют два вида парообразования - испарение и кипение. Рассмотрим сначала испарение жидкости. Испарением называют процесс парообразования, происходящий с открытой поверхности жидкости при любой температуре. С точки зрения молекулярно-кинетической теории эти процессы объясняются следующим образом. Молекулы жидкости, участвуя в тепловом движении, непрерывно сталкиваются между собой. Это приводит к тому, что некоторые из них приобретают кинетическую энергию, достаточную для преодоления молекулярного притяжения. Такие молекулы, находясь у поверхности жидкости, вылетают из неё, образуя над жидкостью пар (газ). Молекулы пар~ двигаясь хаотически, ударяются о поверхность жидкости. При этом часть из них может перейти в жидкость. Эти два процесса вылета молекул жидкости и ах обратное возвращение в жидкость происходят одновременно. Если число вылетающих молекул больше числа возвращающихся, то происходит уменьшение массы жидкости, т.е. жидкость испаряется, если же наоборот, то количество жидкости увеличивается, т.е. наблюдается конденсация пара. Возможен случай, когда массы жидкости и пара, нахо­дящегося над ней, не меняются. Это возможно, когда число молекул, по­кидающих жидкость, равно числу молекул, возвращающихся в неё. Такое состояние называется динамическим равновесием

А пар

Находящийся в динамическом равновесии со своей жидкостью, называют насыщенным

. Если же между паром и жидкостью нет динамического равновесия, то он называется ненасыщенным. Очевидно, что насыщенный пар при данной температуре имеет определённую плотность, называемую равновесной.

Это обусловливает неиз­менность равновесной плотности, а следова­тельно, и давления насы­щенного пара от его объ­ёма при неизменной тем­пературе, поскольку уменьшение или увели­чение объёма этого пара приводит к конденсации пара или к испарению жидкости соответственно. Изотерма насыщенного пара при некоторой температуре в координатной плоскости Р, V представляет собой прямую, параллельную оси V. С повышением температуры термодина­мической системы жидкость - насыщенный пар число молекул, поки­дающих жидкость за некоторое время, превышает количество молекул, возвращающихся из пара в жидкость. Это продолжается до тех пор, пока возрастание плотности пара не приводит к установлению динамического равновесия при более высокой температуре. При этом увеличивается и давление насыщенных паров. Таким образом, давление насыщенных паров зависит только от температуры. Столь быстрое возрастание давления насыщенного пара обусловлено тем, что с повышением температуры происходит рост не только кинетической энергии поступательного движения молекул, но и их концентрации, т.е. числа молекул в единице объема

При испарении жидкость покидают наиболее быстрые молекулы, вследствие чего средняя кинетическая энергия поступательного движения оставшихся молекул уменьшается, а следовательно, и температура жидко­сти понижается (см. §24). Поэтому, чтобы температура испаряющейся жидкости оставалась постоянной, к ней надо непрерывно подводить опре­делённое количество теплоты.

Количество теплоты, которое необходимо сообщить единице массы жидкости, для превращения её в пар при неизменной температуре называется удельной теплотой парообразования.

Удельная теплота парообразования зависит от температуры жидкости, уменьшаясь с её повышением. При конденсации количество теплоты, затраченное на испарение жидкости, выделяется. Конденсация – процесс превращения из газообразного состояния в жидкое.

2. Влажность воздуха.

В атмосфере всегда содержится некоторое количество водяных паров. Степень влажности является одной из существенных характеристик погоды и климата и имеет во многих случаях практическое значение. Так, хранение различных материалов (в том числе цемента, гипса и других строительных материалов), сырья, продуктов, оборудования и т.п. должно происходить при определенной влажности. К помещениям, в зависимости от их назначения, также предъявляются соответствующие требования по влажности.

Для характеристики влажности используется ряд величин. Абсолют­ной влажностью р называется масса водяного пара, содержащегося в единице объёма воздуха. Обычно она измеряется в граммах на кубический метр (г/м3). Абсолютная влажность связана с парциальным давлением Р водяного пара уравнением Менделеева – Клайпейрона , где V - объём, занимаемый паром, m, Т и m - масса, абсолютная температура и молярная масса водяного пapa, R - универсальная газовая постоянная (см. (25.5)). Парциальным давлением называется давление, которое оказывает водяной пар без учёта действия молекул воздуха другого сорта. Отсюда , так как р = m/V- плотность водяного пара.

Испарение – это парообразование, которое происходит только со свободной поверхности жидкости, граничащей с газообразной средой или вакуумом.

Неравномерное распределение кинетической энергии теплового движения молекул приводит к тому, что при любой температуре кине­тическая энергия некоторых молекул жидкости или твердо­го тела может превышать по­тенциальную энергию их связи с остальными молекулами.

Ис­парение - это процесс, при ко­тором с поверхности жидкости или твердого тела вылетают молекулы, кинетическая энергия которых превышает потенциаль­ную энергию взаимодействия мо­лекул. Испарение сопровождает­ся охлаждением жидкости.

Рассмотрим процесс испарения с точки зрения молекулярно-кинетической теории. Чтобы покинуть жидкость, молекулы должны выполнить работу за счет уменьшения своей кинетической энергии. Среди хаотически движущихся молекул жидкости в ее поверхностном слое всегда найдутся такие молекулы, которые стремятся вылететь из жидкости. Когда такая молекула выходит за поверхностный слой, то возникает сила, втягивающая молекулу обратно в жидкость. Поэтому вылетают из жидкости только те молекулы, у которых кинетическая энергия больше работы, необходимой для преодоления противодействия молекулярных сил.

Скорость испарения зависит:

а) от рода жидкости;

б) от площади ее свободной поверхности. Чем больше эта площадь, тем быстрее испаряется жидкость.

в) чем меньше плотность пара жидкости над ее поверхностью, тем больше скорость испарения. Поэтому откачка паров (ветер) с поверхности ускорит ее испарение.

г) с повышением температуры скорость испарения жидкости возрастает.

Парообразование - этопереход вещества из жидкого состояния в газообразное состояние.

Конденсация - это переход вещества из газообразного состояния в жидкое состояние.

При парообразовании внутренняя энергия вещества увеличивается, а при конденсации - уменьшается.

Теплота парообразования этоколичество теплоты Q, необходимое для превращения жидкости в пар при неизменной температуре.

Удельная теплота парообразования L измеряется количеством теплоты, необходимым для превращения в пар единицы массы жидкости при неизменной температуре

Насыщенный и ненасыщен­ный пар. Испарение жидкости в закрытом сосуде при неизмен­ной температуре приводит к постепенному увеличению кон­центрации молекул испаряюще­гося вещества в газообразном состоянии. Через некоторое время после начала процесса испаре­ния концентрация вещества в газообразном состоянии дости­гает такого значения, при ко­тором число молекул, возвращаю­щихся в жидкость в единицу времени, становится равным чис­лу молекул, покидающих по­верхность жидкости за то же время. Устанавливается динами­ческое равновесие между процес­сами испарения и конденсации вещества.

Динамическое равновесие - это когда процесс испарения жидкости полностью компенсируется с кон­денсацией пара, т.е. сколько молекул вылетает из жидкости, столько же в нее возвращается.

Насыщенный пар – это пар, который находится в состоянии динамического равновесия со своей жидкостью. Давление и плотность на­сыщенного пара однозначно определяются его температурой.

Ненасыщенный пар – это пар, который находится над поверхностью жидкости, когда испарение преобладает над конденсацией, и пар при отсутствии жидкости. Его давле­ние ниже давления насыщен­ного пара.

При сжатии насыщенного па­ра концентрация молекул пара увеличивается, равновесие между процессами испарения и конден­сации нарушается и часть пара превращается в жидкость. При расширении насыщенного пара концентрация его молекул уменьшается и часть жидкости превращается в пар. Таким об­разом, концентрация насыщенно­го пара остается постоянной не­зависимо от объема. Так как давление газа пропорционально концентрации и температуре давление насыщенного пара при постоянной температу­ре не зависит от объема.

Интенсивность процесса испа­рения увеличивается с возраста­нием температуры жидкости. По­этому динамическое равновесие между испарением и конденса­цией при повышении темпера­туры устанавливается при боль­ших концентрациях молекул газа.


Top